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Adiabatic Piston as a Dynamical System1
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We consider systems of finitely many interacting particles in a cube with a
separating wall having a big mass M (adiabatic piston). Assuming that the
particles reflect elastically from the ball and the initial velocity of the piston is
zero we prove that as M tends to infinity the dynamics of the piston converges
to periodic oscillations.

KEY WORDS: Adiabatic piston; adiabatic invariant; averaging method.

Recently E. Lieb attracted the attention of many people to the problem of
dynamics of adiabatic piston (see ref. 7). It became so popular that
J. Lebowitz even coined the words ‘‘notorious piston.’’

Thermodynamical aspects of the dynamics of the adiabatic piston were
considered in many papers. As few examples we can mention (3, 4, 8) where
the equations of motion of the piston in the thermodynamical limit were
derived and analyzed.

In this paper we study the finite-dimensional version of the piston
problem assuming that the mass M of the piston tends to infinity and the
number of gas particles stays fixed. More precisely, the piston is the
separating wall inside a volume V … Rd, where d is the dimension,
V={(x1,..., xd) | ai [ xi [ bi, 1 [ i [ d} and ai, bi are fixed. V is cut by the
piston PX onto two parts V (l), V (r)

V (l)={(x1,..., xd) | x1 [X}, V (r)={(x1,..., xd) | x1 \X}.



The piston can move along the x1-axis and changes its velocity under the
action of elastic collisions with the ‘‘gas’’ particles inside V (l) and V (r) so
that X becomes a function of time. The number and the masses of gas
particles inside each part are fixed while the mass M tends to infinity.
If initially the velocity v(0) of the piston is zero then the total energy of the
system does not depend onM and the absolute value of the piston velocity
v(t) at time t is O( 1

`M
). Therefore it is natural to introduce ‘‘slow time’’

y= t
`M

and study the limiting form of dynamics of the piston in the
rescaled time. The main result of this paper states that this limiting dynam-
ics is periodic and its form depends on the Hamiltonians of the left and
right particles. For the case of non-interacting particles (‘‘ideal gas’’) this
statement was proven in ref. 9. It turns out that the oscillatory regime of
the piston is quite universal and in some sense resembles Carnot cycles.

The Hamiltonian of the whole system ‘‘left gas’’+‘‘right gas’’+piston
can be written in the form

H=
1
2
P2

M
+H (l)+H(r), (1)

where P=Mv is the momentum of the piston, H (l), H (r) are Hamiltonians
of the left and right particles. To define completely the dynamics we should
include ‘‘boundary’’ conditions by assuming elastic collisions of gas par-
ticles with the boundary of V and with the moving piston. Formally this
can be done by adding the potential equal to zero inside V (l), V (r) and
infinity on the boundary.

As was mentioned above we consider the slow time y= t
`M
. Also we

need the limiting dynamics which formally corresponds toM=.. For this
dynamics the piston stays fixed and gas particles undergo elastic collisions
with the piston during which the x1-component of the velocity changes its
sign but the others remain unchanged.

The microcanonical distribution dsa
|gradH(a)|

, a=l or r, is an invariant
measure for the a-part concentrated on the manifold S (a) of constant
energy H (a)=h provided that the piston is fixed. We shall use phase
averages:

OfPa=
1

F
S
(a)

dsa
gradH (a)

F
S
(a)

f(x) dsa
|gradH (a)|

.

Basic Assumption. For almost every values of the energies h (l) of
H (l) and h (r) of H (r) and almost every position of the piston X the dynamics
on each S (a) is ergodic wrt the microcanonical distribution.
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Under this assumption we can use averaging method. Denote by
I (a)=I (a)(h, X), a=l, r the phase volume of the set {H(a) < h} provided
that the position of the piston is X. It is easy to derive the formulas (see
ref. 6)

“I (a)

“h
=F

S
(a)

1
|grad H (a)|

dsa, (2)

“I (a)

“X
=−F

S
(a)

“H (a)

“X
dsa

|grad H (a)|
. (3)

Strictly speaking the last formula has a well defined meaning when the
hard-core potential at the piston is replaced by a ‘‘soft potential.’’ The
limiting form as the soft potential tends to the hard-core is a d-function
integral over a submanifold of S (a) where the coordinate of one of the par-
ticles coincides with the coordinate of the piston. We do not discuss this in
more detail and only remark that from (2) and (3)

“I (a)

“X
=−
“I (a)

“h
7“H (a)

“X
8
a. (4)

Denote P̄=P/`M, e= 1
`M
. Then

H=1
2 P̄

2+H(l)+H(r)

and we can write down the equations of motion

Ẋ=eP̄, (5Œ)

Ṗ̄=−e 1“H
(l)

“X
+
“H (r)

“X
2 , (5œ)

dH(l)

dt
=e
“H (l)

“X
P̄, (5'−)

dH (r)

dt
=e
“H (r)

“X
P̄. (5'')

In the last two equations H (l), H (r) are considered as functions of
phase coordinates of gas particles and of the position of the piston. Since
gas particles interact with the piston H (a) are not the first integrals of the
exact dynamics.
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The limiting dynamics corresponding to M=. is ergodic. Therefore,
using the averaging method, we can replace Eqs. (5Œ)–(5'') by the averaged
equations of motion:

Ẋ=eP̄, (6Œ)

Ṗ̄=−e 17“H
(l)

“X
8
l
+7“H

(r)

“X
8
r

2 , (6œ)

dH (l)

dt
=e 7“H

(l)

“X
8
l
P̄, (6'−)

dH(r)

dt
=e 7“H

(r)

“X
8
r
P̄. (6'')

The right-hand sides of these equations depend on X, P̄ and the values
of H (l), H (r). Thus in slow time we get a closed system of equations for
these variables. The theorem by Anosov (see ref. 1) says that on time
intervals O(1e)=O(`M) the measure of the set of initial phase points
where solutions of the exact equations are arbitrarily close to solutions of
the averaged equations tends to 1 asMQ..

Remark. Anosov theorem was proved for system with smooth
Hamiltonians. It is possible to check that it remains valid in our case as
well.

Return back to the variables I (a). Differentiation of these variables
along solutions of the averaged systems gives (see (4))

İ (a)=e 1 “I
(a)

“H (a)
7“H (a)

“X
8
a

+
“I (a)

“X
2=0.

Therefore I (a)(H(a), X) are the first integrals of the averaged system.
By this reason they are approximately conserved for majority of initial
conditions by the exact system on time intervals O(`M) and are called
sometimes almost adiabatic invariants (see ref. 2).

Let us consider again the functions I (a)(H(a), X). Assume that they are
non-degenerate and we can invert them to write H (a)=F(a)(X, I (a)),
a=l, r. Equation (4) implies that “F (a)/“X=O“H (a)/“XPa.

Introduce the effective Hamiltonian for the piston

H(P̄, X, I (l), I (r))=1
2 P̄

2+W(X, I (l), I (r)),

whereW(X, I (l), I (r))=F(l)(X, I (l))+F(r)(X, I (r)).
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As was said above, I (l) and I (r) are almost adiabatic invariants andH
gives the Hamiltonian of the limiting dynamics of the piston.

Consider several examples.

1. Assume that the gases consist of hard balls or disks in the two-
dimensional case of the same radius (see ref. 5). Then I (a)(H, X)=
C (a)H

d
2 n
(a)
Q (a)(X), where Q (a)(X) is the partition function corresponding to

the system of n (a) particles, C (a) is an absolute constant depending on n (a).
Thus

H=((Q(a)(X) C (a))−1 I (a))
2

dn(a)

and the potentialW takes the form

W=((C(l))−1 I (l))
2

dn(l) (Q(l)(X))−
2

dn(l)+((C(r))−1 I (r))
2

dn(r) (Q(r)(X))−
2

dn(r).

If we write formally Q (a)(X)=en
(a)f(a)(x), where f (a)(x) is proportional to the

free energy, then

(Q(a)(X))
2

dn(a)=e
2
d f
(a)(X).

2. In the cases of the ideal gases the dynamics of left and right par-
ticles are non-ergodic on the manifold of constant energy. However, if
we fix all additional first integrals we get the effective potential W=
Cl
X2
+ Cr
(L−X)2

, a1=0, L=b1.
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